
A Tutorial on Parameter Estimation 
 
Introduction 
 
In this post, we will consider how to implement the inverse problem in order to obtain the 
parameters in our model that best fits our data. This will be broken into several smaller steps: 
the discussion of statistical error models, formulation of an error function to minimize, how to 
check that your statistical error model is correct, and an example. 
 
The first question is what is an inverse problem? 

 
 
A forward problem is when we have a mathematical model and the associated parameters and 
we want to generate a solution (orange arrow). An inverse problem is when we have a 
mathematical model and a solution (or observable) and we want to find the parameters that 
generated that solution (blue arrow). 
 
Notation throughout the rest of this post is as follow: 
𝑦′ = 𝑓(𝑡; 𝜃): your mathematical ODE model  
 
 
Although we are only considering one ODE model here, we note the process is similar for 
systems of ODEs as well as PDEs.  
 
Statistical Error Models 
 
When we create a mathematical model describing a biological or physical phenomenon, there 
is often error associated with not only the model formulation, but there is inherent error in the 
data collection process, or “observation error”. We model this noisy data as: 
 

𝑌! = 𝑦+𝑡!; 𝜃", + ℎ! ∗ ℇ!  
 
where 𝑌!  is the solution to the statistical error model at time 𝑡!, 𝑦+𝑡!; 𝜃", is the solution to your 
mathematical model at time 𝑡!  with the ‘true’ parameters 𝜃", ℎ!  determines the scaling of the 
observation error, and ℇ!  is observation error, assumed to be i.i.d., i.e., 𝔼2ℇ!3 = 0. 
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So what does ℎ!  mean? Well, let’s consider two different examples. 
 
Example 1 
 
Imagine your data comes from a heat rod experiment. A temperature source is applied to one 
end of a rod and you are measuring the heat along the rod at specific time points and specific 
locations. The thermometer being used is accurate to 1°C. What is the error if the true 
temperature is: 
 

1. 10°C? 
2. 100°C? 

 
In both cases, your measurement should be accurate to within 1°C! This is an example of 
constant error, in which the error is independent from the quantity of interest. In this case: 

𝑌! = 𝑦+𝑡!; 𝜃", + ℎ! ∗ ℇ!  
where ℎ! = 1 
 
Example 2 
 
You are modeling the growth of cancer cells in a petri dish. You are tasked with counting the 
number of cells in the petri dish on each day of the experiment. What do you imagine the error 
might be on: 
 

1. Day 1, when there are 100 cells? 
2. Day 3, when there are 1000 cells? 

 
I would hazard a guess that you might miss about 5 cells on day 1, but you are likely to miss or 
over-count by more than 5 cells on day 3, by maybe 50 cells. This is an example of proportional 
error, in which the error depends on the quantity of interest. In our example, the error is 
approximately 10% of the population. In this case: 

𝑌! = 𝑦+𝑡!; 𝜃", + ℎ! ∗ ℇ!  
where ℎ! = 𝑦+𝑡!; 𝜃",

$
. Note that the GLS framework simplifies to OLS if 𝛾 = 0. 

 
Error Function to Minimize 
 
Now we have a mathematical model and statistical model. In order to find the estimated 
parameters, 𝜃7, we need to minimize the difference between the data and the simulated 
solution. You may recall that one way to do this is to minimize the sum of squared errors 
between data and solution: 

𝜃7 = argmin
%∈'

[𝑌! − 𝑦+𝑡!; 𝜃,]( 

where Ω represents the parameter space. This is the ordinary least squares (OLS) approach and 
is appropriate for constant statistical error models. 



 
Why is it not appropriate when the errors are proportional?   
 
Let’s look back at our cancer cell example and calculate the sum-of-squared error from day 1 
and day 3: 

1. On day 1, 𝑌! = 105 and 𝑦+𝑡!; 𝜃, = 100, then the sum of squared error would be 25 
2. On day 3, 𝑌! = 1050 and 𝑦+𝑡!; 𝜃, = 1000, then the sum of squared error would be 

2500 
If you use a sum of squared error approach, your parameter estimation routine is going to 
consider day 3 more important than day 1! So how can we fix this? 
 
We use a generalized least squares (GLS) approach in which we weight the sum of squared 
errors with our model solution. Thus, our new parameter estimate is: 

𝜃7 = argmin
%∈'

𝑤! D𝑌! − 𝑦+𝑡!; 𝜃,E
(
 

In practice, this optimization process boils down into an iterative process: 
1. Set the initial weights to 𝑤! = 1 
2. Estimate the parameters to minimize the weighted error 
3. Set the weights to 𝑤! = 𝑦+𝑡!; 𝜃,

)($
 (Note: set 𝑤!  to 0 if 𝑦+𝑡!; 𝜃, is small) 

4. Repeat steps 2-3 until parameters converge 
 
Checking Statistical Error Model 
 
How do you know that the statistical error model you chose was correct? You can examine the 
error residuals. If these residuals appear i.i.d., then your error model is correct. Residuals are 
given by: 
 

𝑟! =
𝑌! − 𝑦(𝑡!; 𝜃)
𝑦(𝑡!; 𝜃)$

 

 
Note that in the case of ordinary least squares (OLS), this simplifies to 𝑟! = 𝑌! − 𝑦(𝑡!; 𝜃), since 
𝛾 = 0.  
 
Example 1 
 
Here is a residual plot for a system that used an OLS framework but had an underlying 
proportional error. As can be seen, the residuals do not appear i.i.d., rather they seem to have a 
dependence on time (the residuals are growing with time). This indicates that the incorrect 
statistical error model was chosen. In particular, when the errors ‘fan’ outward, 𝛾 should be 
increased. 



 
Example 2 
 
In this example, a GLS framework was used for a system that does have proportional error. 
When examining the residual error plots, it does appear that the residuals are i.i.d., and do not 
depend on time or the model value.  

 
Example 3 
 
In this example, a GLS framework was used when the system had constant errors. Like example 
1, the residual errors do not appear i.i.d., but in this case they seem to decrease as time 
increases. In this case the residuals ‘fan’ inward, and this indicates that the value of 𝛾 is too 
large. 

 
 
So how to determine the correct value of 𝛾? 

1. Make an assumption based on your data collection procedure (do you suspect it is 
population-dependent? Set 𝛾 = 1) 

2. Run the OLS/GLS framework to estimate your parameters 
3. Examine the residuals 

a. If they look i.i.d., done! 
b. If not, change 𝛾: If residuals ‘fan out’, increase	𝛾, if residuals ‘fan in’, decrease	𝛾. 
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A Practical Example 
 
Consider the logistic growth equation 𝑦* = 𝑟𝑦 D1 − +

,
E. In our practical example we will 

1. Generate two synthetic datasets with 𝑟 = 0.5 and 𝐾 = 200. We will have 101 
collection points between time 0 and time 30, and we will use 10% proportional error 
for dataset1 and a constant error of 20 for dataset 2. 

2. Estimate 𝑟 and 𝐾using the OLS framework for the constant error dataset 
3. Estimate 𝑟 and 𝐾using the GLS framework for the proportional error dataset 
4. Plot the residuals/modified residuals to ensure our choice of 𝛾 was correct. 

 
See parameter_tutorial.m for code 
 
Your Task 
 
To test your understanding of the code: 

1. Estimate 𝑟 and 𝐾using the GLS framework for the constant error dataset 
2. Estimate 𝑟 and 𝐾using the OLS framework for the proportional error dataset 
3. Plot the residuals/modified residuals and see how the choice of 𝛾 was incorrect. 

 


